

C++11 Guidelines

I. Hrivnacova, IPN Orsay

20th Geant4 Collaboration Meeting,
30 September 2015, Fermilab

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 2

Introduction

“C++11 feels like a new language.”

The pieces just fit together better than they used to and I
find a higher-level style of programming more natural
than before and as efficient as ever.
…
In other words, I'm still an optimist.
 – Bjarne Stroustrup

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 3

C++11 As A Revolution

● Lambda expressions - let you define functions locally, at the
place of the call

● Automatic type deduction - you can declare objects without
specifying their types

● Rvalue references - can bind to “rvalues”, e.g. temporary
objects and literals.

● Smart pointers – no delete
● C++ Standard library - new container classes, new algorithm

library and several new libraries for regular expressions, tuples,
…

● Threading library – thread class

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 4

About This Mini-Course

● There is a lot to learn about C++11
● The Geant4 C++11 guidelines document and this mini-course

as a starting point
● Not all important features are covered in the document

● Move semantics, New features in C++ Standard library or Threading
library

● Due to lack of time and/or lack of experience (Standard Library, Move
semantics) or because they will be applied by the core developers and
are not supposed to be used directly by Geant4 developers (Threading)

● More attention is given to Move semantics in this mini-course
than in the document

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 5

C++11 Guidelines Document
● Compiled from the following

sources:
● Effective Modern C++ by Scot

Meyers (O'Reilly). Copyright
2015 Scot Meyers. 978-1-491-
90399-9.

● ALICE O² C++ Style Guide.
● cplusplus.com
● Stack Overflow
● It is using style sheets of C++

Google Style guide, Revision
3.274 (link) under the CC-By
3.0 License further modified by
ALICE O² project

http://geant4.cern.ch/collaboration/c++11_guide.shtml

http://geant4.cern.ch/collaboration/c++11_guide.shtml

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 6

Guidelines

● The guidelines are the guidelines, not rules.
● With each guideline we give the rationale behind this guideline
● The guidelines grouping was mostly inspired by Meyer's book:

● Deducing types and autos
● Modern coding style
● Smart pointers
● Standard Library and Lambda Expressions
● Concurrency

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 7

Legend
To The Slides

A simple example of
C++11 code discussed.

// code which is error-prone or wrong
// and which can be avoided using C++11 features

// code using C++11 features

// code using C++98 features
// which can be improved with use of C++11 features

The guideline text.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 8

Deducing Types and auto
Braced Initialization

In addition to C++98 type deduction for function templates, C++11
adds two more: auto and decltype(*).

(*) Not explained in this mini-course

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 9

auto auto x = 0;

int x1; auto x3 = 0;

Prefer auto to explicit type declarations.

● Compiles but x1
may be used
further without
being initialized

auto x1;

● Produce
compilation error

● This code is ok

● Auto variables must be always initialized● Auto variables must be always initialized

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 10

auto (2)

std::unordered_map<std::string, int> m;
for (const std::pair<std::string, int>& p : m) {
 ... // do something with p
}

std::unordered_map<std::string, int> m;
for (const auto& p : m) {
 ... // do something with p
}

● The p type in the loop does not match the map m
element type, which is std::pair<const std::string,
int> (note the const)

● Auto variables are immune to type mismatches

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 11

Braced
Initialization

std::vector<int> myVector{0, 1, 2};

double x, y, z;
int sum1(x + y + z);
int sum2 = x + y + z;

Distinguish between () and {} when creating objects.

double x, y, z;
int sum1{ x + y + z };

● Compiler ERROR

● Prevents from narrowing conversion

● Conversion double → int

Widget w2();

● Declares a function
named "w2" that
returns a Widget

● Call Widget
constructor with no
arguments

● Prevents from "most vexing parse"

Widget w1(10);

● Call Widget
constructor with
argument 10

Widget w3{};

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 12

Braced Initialization

std::initializer_list
● Otherwise the parameters are

matched to std::initializer_list
parameters if at all possible

class Widget {
public:
 Widget(int i, bool b); #1
 Widget(int i, double d);#2
};

Widget w1(10, true); // #1
Widget w2{10, true}; // #1
Widget w3(10, 5.0); // #2
Widget w2{10, 5.0}; // #2

● In constructor calls, parentheses and
braces have the same meaning as
long as std_initializer_list parameters
are not involved

class Widget {
public:
 Widget(int i, bool b); #1
 Widget(int i, double d); #2
 Widget(#3
 std::initializer_list<double> il);
};

Widget w1(10, true); // #1
Widget w2{10, true}; // #3 !!
Widget w3(10, 5.0); // #2
Widget w2{10, 5.0}; // #3 !!

std::initializer_list<T> il;

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 13

Braced Initialization
std::initializer_list (2)

std::vector<int> v1(10, 20);

● Be careful when creating a std::vector of a numeric type with two
arguments

● Never assign a braced-init-list to an auto local variable

std::vector<int> v2{10, 20};

● Creates 10-element std::vector, all
elements have value of 20

● Creates 2-element std::vector, all
element values are of 10 and 20

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 14

Type deduction

auto x3 = { 27 };
auto x4{ 27 };

auto x1 = 27;
auto x2(27);

● Some of auto's deduction type results, while conforming to the
prescribed algorithms, may be different from the programmer
expectations.

● x3, x4 type is
std::initializer_list<int>

● x1, x2 type is int

auto-typed variables can be subject of pitfalls.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 15

Modern Coding Style

Range-based for loop, nullptr, Alias Declarations,
constexpr, Scoped enums, Deleted Functions, Overriding

Functions, Explicit Constructors, Delegating and
inheriting constructors, Special member functions

generation

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 16

Range-based
for loop

● Three use cases of auto-declaration:

std::vector<int> v = {0, 1, 2, 3, 4, 5};

● Access by value,
i type is int

for (auto i : {0, 1, 2}) { .. }

Prefer range-based for loop when iterating over all elements in
a container or a braced initializer list.

for (auto i : v)
{
 ..
}

for (const auto& i : v)
{
 ..
}

for (auto&& i : v)
{
 ..
}

● Access by const reference,
i type is const int&

● Access by reference,
i type type is int&

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 17

nullptr Widget* widget = nullptr;

● Using nullptr instead of 0 and NULL avoids overload resolution
surprises, because nullptr can't be viewed as an integral type.

Prefer nullptr to 0 and NULL.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 18

Alias
Declarations

using MyType = std::vector<int>;

● typedefs do not support templatizations, but alias declarations do.

● The syntax with alias declarations is easier to understand in some
constructs (e.g. function pointers).

// C++98
typedef std::map<double, double> MyMap;

// C++11
using MyMap = std::map<double, double>;

Prefer alias declarations to typedefs.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 19

constexpr

constexpr auto arraySize = 10;
std::array<int, arraySize> data;

● Some variables can be declared constexpr to indicate the variables are
true constants, i.e. they are initialized with values known during
compilation.

● Some functions and constructors can be declared constexpr which
enables them to be used in defining a constexpr variable.

constexpr int getDefaultArraySize (int multiplier) {
 return 10 * multiplier;
}
std::array<int, getDefaultArraySize(3)> data;

Not supported
on “vc12” !

constexpr auto size = 10;

Use constexpr whenever possible.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 20

Scoped
enums

enum class Color { black, white, red };

Prefer scoped enums to unscoped enums.

● C++11 enums declared via enum class don't leak names:

● Scoped enums prevent from implicit type conversions, they convert to
other types only with a cast.

● Scoped enums may always be forward-declared

enum Color98 {
 black, white, red };

Color98 c = white;

enum class Color11 {
 black, white, red };

Color11 c = white; // ERROR
Color11 c = Color11::white;

● Ok ! enumerator "white" is in this
scope ● Scope must be provided

enum Color98; // ERROR
enum Color98: int; // Ok

enum class Color11;

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 21

Deleted
Functions

Prefer deleted functions to private undefined ones.

class Widget {
...
private:
 Widget(const Widget&);
 Widget& operator=(const Widget&);
};

class Widget {
public:
 Widget(const Widget&) = delete;
 Widget& operator=(const Widget&)= delete;
};

● Any function may be deleted, including non-member functions and
template instantiations. They can be use to invalidate some undesired
types in overloading.

Widget(const Widget&) = delete;

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 22

Overriding
Functions

Declare overriding functions override or final.

class Derived : public Base {
public:
 ...
 virtual void mf1();
};

class Derived : public Base {
public:
 ...
 virtual void mf1() override;
};

● The final keyword tells the compiler that subclasses may not
override the virtual function anymore.

virtual void f() override;

class Base {
public:
 ...
 virtual void mf1() const;
};

● Will compile with WARNING ● Will NOT compile - ERROR

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 23

Explicit
Constructors

Declare constructors with one argument explicit, except for
copy constructors and constructors with
std::initializer_list.

explicit Widget(int number);

class Widget {
public:
 Widget(int number);
};

class Widget {
public:
 explicit Widget(int number);
};

void f(const Widget& widget) { ... }

f(5);

● The Widget(5) constructor will be
called and passed in function f

● Compiler error: no matching
function for call to 'f'

● Declaring a constructor explicit prevents an implicit conversion.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 24

Delegating and Inheriting
Constructors

Use delegating and inheriting constructors when they reduce
code duplication.

class Widget {
 public:
 Widget::Widget(const string& name) : mName(name) { }
 Widget::Widget() : Widget("example") { }
 ...
};

● Example of a delegating constructor:

● Example of an inheriting constructor:

class Base {
 public:
 Base();
 explicit Base(int number);
 ...
};

class Derived : public Base {
 public:
 using Base::Base;
};

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 25

Move Semantics

Passing objects by value, Lvalue, Rvalue, &&, Special
member functions

This section was also inspired by
https://mbevin.wordpress.com/2012/11/20/move-semantics/

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 26

Passing Large Objects

● With C++98 - large objects
are returned from functions by
reference or by pointer to
avoid expense copying

vector<int>* makeBigVector1()
{..}
...
vector<int>* v1 = makeBigVector1();
delete v1;

void makeBigVector2(vector<int>& out)
{..}
..
vector<int> v2;
makeBigVector2(v2);

● With C++11 move
semantics they can be
simply return by value

vector<int> makeBigVector()
{..}
...
auto v = makeBigVector();

● All STL collection classes have
been extended to support move
semantics

● The content of the temporary
created vector in the function
body is moved in 'v' and not
copied

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 27

Rvalue, lvalue, &&

● New concepts of rvalues and lvalues in C++11
● an lvalue is an expression whose address can be taken, a

locator value. Anything you can make assignments to is an
lvalue

● an rvalue is an unnamed value that exists only during the
evaluation of an expression

● the && operator is new in C++11, and is like the reference
operator (&), but whereas the & operator can only be used on
lvalues, the && operator can only be used on rvalues.

● int x = 1 - x is lvalue, 1 is rvalue (l=left, r=right)

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 28

Rvalue, lvalue, && - Example

class A {
public:
 static A inst;
 static A& getInst() { return inst; }//#1
 static A getInstCopy(){ return inst; }//#2
};

● #1 is returning a reference
to a static variable, hence
it's returning an lvalue

● #2 is returning a temporary
copy of instance, hence it's
returning an rvalue

A& inst1 = A::getInst();

A&& inst2 = A::getInst();

A::getInst() = A();

A inst3 = A::getInstCopy();

A& inst4 = A::getInstCopy();

A&& inst5 = A::getInstCopy();

1. ok - we've fetched a reference to the static
instance variable

2. ERROR - can't assign a reference to an
rvalue reference

 - getInst() is an lvalue reference, we assign a
 new value to it

3. ok - we've fetched a copy of the instance
4. ERROR- can't assign a reference to a

temporary (an rvalue)
5. ok - we've assigned an rvalue reference to

the temporary copy that was made of the
instance

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 29

When Moving Is Possible

● When passing an object to a function (or returning it from a function), it's
possible to do move (rather than a copy) if:

● the object is an rvalue
● the object class defines the special member move function

● When move occurs, data is removed from the old object and placed into a
new object; the compiler can only do a move if

● The old object is temporary
● When std::move is called explicitly on an object

string s1("abcd");
cout << "s1: " << s1 << endl;
std::string s2(std::move(s1));
cout << "s1: " << s1 << endl;
cout << "s2: " << s2 << endl;

Will produce output:

s1: abcd
s1:
s2: abcd

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 30

Special Member Functions

● The special member functions are those compilers may generate on their
own:

● default constructor, destructor, copy operations
● move operations (C++11 only).

class Widget {
public:
 Widget(const Widget&& rhs);
 Widget& operator=(const Widget&& rhs);
};

● The behavior of a class which relies on generating all special member
functions can be accidentally changed by adding one of these functions,
e.g. a destructor for logging functionality.

● That's why it's important to understand the C++11 rules governing this
automatic generation.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 31

Special Member
Functions Generation

● Move operations are generated only for classes lacking explicitly declared
moved operations, copy operations, and a destructor.

● The copy constructor is generated only for classes lacking an explicitly
declared copy constructor, and it's deleted if a move operation is declared.

● The copy assignment operator is generated only for classes lacking an
explicitly declared copy assignment operator, and it's deleted if a move
operation is declared. Generation of the copy operation in classes with an
explicitly declared destructor is deprecated.

● Member function templates never suppress generation of special member
function.

Understand special member functions generation.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 32

Special Member
Functions Generation (2)

● If e.g. a destructor for logging functionality is added to a class with no special
member functio

● This will cause that only copy operations are generated and then performed
instead of moving operation what can make them significantly slower.

● When the behavior of compiler-generated functions is correct, you can
declare this explicitly using = default keyword and make their existence
independent from the implicit generation rules:

class Widget {
public:
 ~Widget();

 Widget(const Widget&& rhs) = default;
 Widget& operator=(const Widget&& rhs) = default;
};

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 33

Smart Pointers

Std::unique_ptr, std::shared_ptr, srd::weak_ptr,
make functions

Smart pointers are objects that act like pointers, but automate
ownership. They are extremely useful for preventing memory

leaks. They also formalize and document the ownership of
dynamically allocated memory.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 34

std::unique_ptr

Use std::unique_ptr for exclusive-ownership resource
management.

#include <memory>
{
 std::unique_ptr<int> uptr(new int(42));

 std::cout << uptr.get() << std::endl; // print a pointer value
 std::cout << *uptr << std::endl; // print 42
}
// uptr is automatically freed here};

● Small, fast, move-only

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 35

std::unique_ptr (2)

● The same object cannot be pointed by two unique pointers:

{
 std::unique_ptr<int> first(new int(1));
 std::unique_ptr<int> second = first;
}

● Compiler error: “call to implicitly-deleted copy
constructor of 'unique_ptr<int>' “

● Can be converted in std::shared_ptr:

{
 std::unique_ptr<int> uptr(new int(42));
 std::shared_ptr<int> sptr(std::move(uptr));
}

● Note that after the move the unique pointer does not point
to the int object anymore: uptr.get() will return 0x0

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 36

std::shared_ptr

Use std::shared_ptr for shared-ownership resource
management.

{
 std::shared_ptr<int> sh1(new int);
 std::cout << sh1.use_count() << std::endl; // prints 1

 std::shared_ptr<int> sh2(sh1);
 std::cout << sh1.use_count() << std::endl; // prints 2
 std::cout << sh2.use_count() << std::endl; // prints 2
}

● Garbage collection for the shared lifetime management of arbitrary
resources

● Typically twice big as std::unique_ptr, overhead for control blocks, and
requiring atomic reference count manipulations.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 37

std::shared_ptr (2)

● Avoid creating std::shared_ptr from variables of raw pointer type.

{
 auto pw = new Widget;
 std::shared_ptr<Widget> spw1(pw);
 std::shared_ptr<Widget> spw2(pw);
}
● Two control blocks for the same object, *pw, are created, and so also

reference counts, each of which will eventually become zero, that will lead
to an attempt to destroy *pw twice.

● Correct code

{
 std::shared_ptr<Widget> spw1(new Widget);
 std::shared_ptr<Widget> spw2(spw1);
}

● The Widget is created via spw1 and spw2 uses then the same control block
as spw1

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 38

std::weak_ptr

Use std::weak_ptr for std::shared_ptr-like pointers that
can dangle.

● Potential use cases for std::weak_ptr include caching, observer lists, and
the prevention of std::shared_ptr cycles.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 39

make
Functions

● Compared to direct use of new, make functions eliminate source code
duplication, improve exception safety and (some) make code faster

{
 std::unique_ptr<Widget> upw(new Widget>);
 std::shared_ptr<Widget> spw(new Widget>);
}

● Without make function (previously was in green, now in red)

{
 auto upw1(std::make_unique<Widget>());
 auto upw1(std::make_shared<Widget>());
}

Prefer std::make_unique(*) and std::make_shared to
direct use of new.

● With make function (Widget type is not duplicated)

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 40

make
Functions(2)

● std::make_unique is only part of C++14.

● Its implementation can be however easily added in C++11 based
code. Both a simple version and a full-featured linked in the
guidelines document.

● Simple implementation is also available in G4AnalysisUtilities.hh

● There are situations where use of make functions is inappropriate

● See more details in the guidelines document

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 41

Standard Library and
Lambda Expressions

Lambda Expressions, Algorithms, (Default) Capture
Modes, Hashed Containers

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 42

Lambda
Expressions

Understand lambda expressions.

[]() { }

[]() { }

● A lambda function in C++

● [] is the capture list, ()the argument list and {} the function body

● The argument list is the same as in any other C++ function.

● The function body contains the code that will be executed when the lambda is
actually called.

● The capture list defines what from the outside of the lambda should be available
inside the function body and how.

● We will see this on the next slides

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 43

Lambda
Expressions (2)

auto func = [] () { std::cout << "Hello world" << std::endl; };
func();

● Simple examples for understanding lambda syntax

● Use lambda as a function:

● Use lambda as an expression:

int i = ([](int j) { return 5 + j; })(6);
std::cout << "i=" << i << std::endl;

● Will print i=11

● We will see more meaningful use of lambda expression with SL algorithms

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 44

Lambda
Expressions (3)

● Unlike an ordinary function, which can only access its parameters and local
variables, a lambda expression can also access variables from the enclosing
scope(s).

int x = 10;
int i = ([x](int j) { return 5 + j + x; })(6);
std::cout << "i=" << i << std::endl;

● The way how the external variables will be used in lambda is defined in the
capture list. It can be either:

● a value: [x]

● a reference [&x]

● any variable currently in scope by reference [&]

● same as previous, but by value [=]

● You can mix any of the above in a comma separated list [x, &y]

● Will print i=21

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 45

Default
Capture Modes

Avoid default capture modes in lambda expressions.

● A lambda with the default by-reference (or by-value) capture mode can take
by reference (or by value) any variable that is currently in scope:

[&]() { /* do something here*/ } // by-reference capture
[=]() { /* do something here*/ } // by-value capture

● Default by-reference capture can lead to dangling references. A problem
can arise if the variable's life time is shorter than the life-time of the
lambda and lambda can be then used with a dangling reference.

● Default by-value capture can lead to dangling pointers (especially this).

[&]() { }
[=]() { }

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 46

Algorithms

Prefer algorithm calls to handwritten loops.
● C++ standard library algorithms (std::for_each, std::find_if or std::transform

are very efficient and can be very handy.
● But difficult with C++98, particularly if the functor you would like to apply is

unique to the particular function.

● C++11 lambdas allow to write cleaner and shorter code

● An example follows on the next slide

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 47

Algorithms (2)

void func11(std::vector<int>& v) {
 std::for_each(v.begin(),v.end(), [](int) {/* do something here*/});
}

#include <algorithm>
#include <vector>

namespace {
struct f {
 void operator()(int) {
 // do something
 }
};
}

void func98(std::vector<int>& v) {
 f f;
 std::for_each(v.begin(), v.end(),
f);
}

● If you only use f once and in
that specific place it seems
overkill to be writing a whole
class

● Using lambda makes this
cleaner to read (it keeps
everything in one place) and
potentially simpler to maintain

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 48

Lambda Expressions

A Closure
● In the previous example

● The highlighted expression is the lambda
● A closure is the runtime object created by a lambda

● Depending on the capture list, it holds copies of or references to
captured data

● In the call to std::for_each above, the closure is the object which is
passed at runtime as the third argument.

● A closure class is the a class from which a closure is instantiated. This
class is generated by the compiler for each labda.

void func11(std::vector<int>& v) {
 std::for_each(v.begin(),v.end(), [](int) {/* do something here*/});
}

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 49

Hashed
Containers

Since C++11 the standard library provides unordered containers
in headers <unordered_set>, <unordered_multiset>,
<unordered_map> and <unordered_multimap>

● Unordered maps are associative containers that store elements formed by
the combination of a key value and a mapped value, and which allows for
fast retrieval of individual elements based on their keys.

● Faster than map containers to access individual elements by their key

● Generally less efficient for range iteration through a subset of their elements.

● Implement the direct access operator (operator[]) which allows for direct access
of the mapped value using its key value as argument.

● Appropriate use of hashed containers can improve performance.

● A link to examples at cplusplus.com and stackoverflow.com is provided in the
guidelines document.

<unordered_map>
...

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 50

Threading Support

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 51

Threading
Support

C++11 threading libraries should be used through the Geant4
interface and not directly.

● C++11 provides support for multithreading in dedicated headers.

● Migration to C++11 will be done internally in Geant4 threading related core
classes and definitions. In this way, they will be available through the Geant4
interface and should not be used directly.

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 52

Example Of Code
in ref06 (C++98) – ref09 (C++11)

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 53

● Explicit constructor
● Overriding function declared final
● std::unique_ptr (requires including <memory>

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 54

● Nullptr, no delete in destructor, auto
● The parameters ownership is handled by the framework, smart pointers should

not be used in this case by the commands objects
● Using G4Analysis::make_unique (std::make_unique only in C++14)

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 55

● When the base class API is using raw pointers, we need to access them via smart
pointers get() function

● More usage of auto

20th Geant4 Collaboration Meeting, 30 September 2015, Fermilab 56

Further Reading

● Geant4 C++11 Guidelines document
● http://geant4.cern.ch/collaboration/c++11_guide.shtml

● Effective Modern C++ by Scot Meyers (O'Reilly). Copyright
2015 Scot Meyers.

● C++ Core Guidelines by Bjarne Stroustrup, Herb Sutters:
● https://github.com/isocpp/CppCoreGuidelines

● Or choose another one from the list of recommended
books at https://isocpp.org/get-started

● And be prepared for C++14

https://isocpp.org/get-started

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

