Geant4 Users' Workshop 2002
CERN, Friday, 15. November 2002

Importance Sampling
 (geometrical splitting and
 Russian roulette)

M. Dressel

IT-API
CERN

Outline

- Introduction
- Example problem of importance sampling
- Concept of importance sampling
- Implementation aspects
- Scoring
- Summary
- Documentation
- Appendix: importance algorithm

introduction

- Variance reduction techniques like "Importance sampling" have been developed to reduce computing time by increasing the efficiency of MC calculations.
- typical or potential users areas of variance reduction:
- radiation characteristics: LHC detector, space ships, underground experiments
- deep penetration: shielding, underground experiments
- dosimetry
- background: hit rate, occupancy, important damage contributions from tails
- accelerator studies: radiation environment, beam loss

General v.r. aspects

- Common concept:
- introduce a statistical particle weight W
- sample interesting "events" more often than others \rightarrow produces a bias with respect to the physics simulated
- correct for the change in sampling by adjusting the particle weight W
- all estimators have to take the weight into account!
- Comparing analog to variance reduced MC for equal computing time:
$-\bar{x}$: equal (mean value)
$-v_{\bar{x}}:$ reduced (variance of mean value)

figure of merit

A measure of efficiency of the calculation is the figure of merit:

$$
F O M=\frac{1}{R^{2} T}
$$

- $R=\frac{\sigma}{\bar{x} \sqrt{N}}$
$\bar{x}=$ mean value, $\sigma=$ standard deviation, $N=$ number of measurements
- $T=$ computing time
- The FOM will be compared to the analogue calculation.
- The larger the FOM the better.

Importance sampling motivation

- a prime example application for importance sampling is: shielding against neutrons of a few MeV energy
- example exercise: interrogate on neutron related quantities behind a thick concrete shield:
- 180 cm thick concrete cylinder with radius 100 cm
- 10 MeV neutrons entering along the cylinder axis
- estimate neutron energy "cell flux" in the last 10 cm

Analogue simulation

imp. samp. concept

- example with two cells with importance values $I_{1}=1$ and $I_{2}=2$
example: two cells with $\mathrm{I}_{2}=2 * I_{1}$

Importance sampled

Example energy flux

Φ_{E} the energy flux per starting neutron:

- flux: $\Phi(\vec{r}, E, t)=v N(\vec{r}, E, t)$
$v=$ velocity, $N=$ particle density $=\frac{\text { particle weight }}{\text { unit volume }}$
- integrated: $\iiint \Phi(\vec{r}, E, t) d E d t \frac{d V}{V}$ using $d s=v d t$
- $\iiint N(\vec{r}, E, t) d s d E \frac{d V}{V}=W T_{l} / V$ (track length estimator for flux)
$W=$ particle weight, $T_{l}=$ track length, $V=$ volume
Φ_{E} is estimated by $\sum E * W T_{l} / V$ per starting neutron

Result energy flux

- equal amount of computing time

Analogue calculation:

$$
\Phi_{E}=1.52 \times 10^{-8} \mathrm{MeV} / \mathrm{cm}^{2}, R_{a}=0.24, F O M_{a}=18
$$

Importance sampled calculation:
$\Phi_{E}=1.37 \times 10^{-8} \mathrm{MeV} / \mathrm{cm}^{2}, R_{i}=0.016, F O M_{i}=4033$
Interpretation of normalized FOM:
Time to run analog calculation to have $R_{a}=R_{i}$:
$T_{a}=\frac{F O M_{i}}{F O M_{a}} * T_{i}=224 * T_{i}$
Analog calculation would have to be repeated 224 times!
Note: "R's" are statistical errors, related to precision not to accuracy!

Implementation basics

General: Importance sampling:

- is done particle type wise.
- is only supported for field free applications and neutral particles.

Geometries

Definition of cells:

- cells are physical volumes or simple replicas identified by G4GeometryCell

Two kinds of geometries may be used to define cells:

- The mass geometry used for tracking (normal geometry).
- A parallel geometry to be designed by the user for importance sampling.
- The G4GeometryCell and importance value pairs are stored in a importance store (G4VIStore, G4IStore).

The user has to assign importance values to all cells of the geometry.

Multiple particle types

Sampling multiple particle types:

- A geometry may be used to importance sample one or more particle types.
- And multiple parallel geometries may be used for different particle types.

Scoring

The scoring of some quantities helpful to check the importance sampling is supported. The scoring:

- may be particle type specific or it may integrate over several particle types.
- is related to the cells described above.
- may also apply to the mass or parallel geometries.
- may also be used without importance sampling.

Summary

- importance sampling and scoring updated for version 5.0
- mass and parallel geometry supported
- large performance improvement for neutron shielding to be expected

Other variance reduction techniques:

- weight roulette and implicit capture (prototypes for both exist)
- weight window biasing (has been looked into)

Documentation

For Geant4 version 5.0

- Slides:
http://dressel.home.cern.ch/dressel/biasscore/u02.pdf
- Description under development:
http://dressel.home.cern.ch/dressel/biasscore/Sampling.html (will move to Geant4 home page with releasing version 5.0)
- Examples: "\$G4INSTALL/examples/extended/biasing"

Appendix: Imp. samp. algorithm

- The use of customized algorithms is supported.
- A customized algorithm derives from

G4VImportanceAlgorithm

- A default algorithm is implemented in G4ImportanceAlgorithm

Default algorithm

- divide geometry into cells
- assign importance values to the cells
- when crossing from cell m to cell $n: r=I_{n} / I_{m}$

1. if $r=1$: continue transport
2. if $r<1$: play Russian roulette
3. if $r>1$: split into r tracks

- real numbers possible for importance values: change in $r>1$: two values for number of particles after splitting:
$-\operatorname{int}(r)+1$ particles with probability $p=r-i n t(r)$
- int(r) particles with probability $1-p$
- particle weight $W \rightarrow W / r$ "expected value splitting"

