
Reference
Counted
Touchables

Design

Radovan Chytracek
CERN IT/API Geant4

Radovan Chytracek CERN IT/API Geant4 2

Motivation
l Use case
– Transportation creates touchables as a track

propagates across volumes
– User actions get pointers to the touchables allowing

to access their data
l Problem
– Transportation uses two touchables in the flip-flop

way for pre-step and post-step points.
– Pointers passed to user actions become invalid after

each step so the touchables must be copied
– Using touchable pointers implies explicit memory

management in a user code and is error prone

Radovan Chytracek CERN IT/API Geant4 3

Requirements
l Touchables must become “persistent”
– remain valid after each step (during one run)

l Simpler (automatic) memory management
– no user action is required to create or delete them

l The existing interface should be preserved if
possible

Radovan Chytracek CERN IT/API Geant4 4

Affected classes and categories
l G4VTouchable and its derivates
– G4GRSSolid, G4GRSVolume, G4TouchableHistory

l G4Navigator
l G4TransportationManager
l G4SteppingManager, G4Track, G4Step
l User actions
l Parametrization and ReadOut Geometry

l May be others...

Radovan Chytracek CERN IT/API Geant4 5

Possibilities
l Handle-Body design pattern
– G4NavigationLevel already implemented this way

l Smart-pointer idiom
l In both cases the use of pointers must go away
– Passing by pointer to an object provides no way to

trigger proper reference counting unless the users
are forced to follow the rule of adding and removing
object reference counts by hand
• Microsoft (COM), Gaudi (Interfaces and Services)

l Both ways imply the clients keep or manipulate
the counted objects only using their handles

Radovan Chytracek CERN IT/API Geant4 6

Prototype implementation
l The hybrid of auto_ptr (STL) with reference counting

ability
l A templated class G4ReferenceCountedHandle is

introduced
– Essentially a wrapping class emulating dumb pointers

• basically any object can be made reference countable
– Automagically deletes the object when object’s count is zero
– Implements copy constructor, assignment, dereferencing
– Supports conversions to the type of the counted object
– Can’t be created by new or deleted by calling delete
– Must be passed always by reference(&) or copy
– Multiple handles share one instance of counted object
– Does not support exclusive ownership

• an object behind the pointer can be modified

Radovan Chytracek CERN IT/API Geant4 7

Design - Class Diagram

Radovan Chytracek CERN IT/API Geant4 8

Design - Class Diagram

G4VTouchable
(from geometry)

G4TouchableHandle
(from geometry)

G4TouchableHistoryHandle
(from geometry)

G4TouchableHistory
(from geometry)

G4GRSSolid
(from geometry)

G4GRSSolidHandle
(from geometry)

G4GRSVolume
(from geometry)

G4GRSVolumeHandle
(from geometry)

X

G4ReferenceCountedHandle
(from geometry)

XXX

Reference Counted Touchables

X

Radovan Chytracek CERN IT/API Geant4 9

Possible extensions
l Hide the operators new() and delete()
– an attempt to dynamically create or delete is

detected at compile time
l Implementation using G4Allocator and related

classes, if needed, to make it faster
l Alternative implementation of client classes
– smart-pointers not used directly as a reference

counting handle
– client wrapper classes(handle) hold the smart-

pointer to their implementation classes(body)

Radovan Chytracek CERN IT/API Geant4 10

Alternative Implementation

Body
X

SmartPointer

CountedObj
(from SmartPointer)

0..1-fObj 0..1

Handle

CountableBody X

<<wraps>>

G4TouchableHistory

G4TouchableHistoryImpl

SmartPointer<G4TouchableHistoryImpl>

class Handle {
private:
SmartPointer<Body> fCountableBody;
};

